You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
891 lines
24 KiB
891 lines
24 KiB
typedef struct { |
|
void (*arrange)(Monitor *, int, int, int, int, int, int, int); |
|
} LayoutArranger; |
|
|
|
typedef struct { |
|
void (*arrange)(Monitor *, int, int, int, int, int, int, int, int, int); |
|
} TileArranger; |
|
|
|
static const LayoutArranger flexlayouts[] = { |
|
{ layout_no_split }, |
|
{ layout_split_vertical }, |
|
{ layout_split_horizontal }, |
|
{ layout_split_centered_vertical }, |
|
{ layout_split_centered_horizontal }, |
|
{ layout_split_vertical_dual_stack }, |
|
{ layout_split_horizontal_dual_stack }, |
|
{ layout_floating_master }, |
|
{ layout_split_vertical_fixed }, |
|
{ layout_split_horizontal_fixed }, |
|
{ layout_split_centered_vertical_fixed }, |
|
{ layout_split_centered_horizontal_fixed }, |
|
{ layout_split_vertical_dual_stack_fixed }, |
|
{ layout_split_horizontal_dual_stack_fixed }, |
|
{ layout_floating_master_fixed }, |
|
}; |
|
|
|
static const TileArranger flextiles[] = { |
|
{ arrange_top_to_bottom }, |
|
{ arrange_left_to_right }, |
|
{ arrange_monocle }, |
|
{ arrange_gapplessgrid }, |
|
{ arrange_gapplessgrid_alt1 }, |
|
{ arrange_gapplessgrid_alt2 }, |
|
{ arrange_gridmode }, |
|
{ arrange_horizgrid }, |
|
{ arrange_dwindle }, |
|
{ arrange_spiral }, |
|
{ arrange_tatami }, |
|
}; |
|
|
|
static void |
|
getfactsforrange(Monitor *m, int an, int ai, int size, int *rest, float *fact) |
|
{ |
|
int i; |
|
float facts; |
|
Client *c; |
|
int total = 0; |
|
|
|
facts = 0; |
|
for (i = 0, c = nexttiled(m->clients); c; c = nexttiled(c->next), i++) |
|
if (i >= ai && i < (ai + an)) |
|
#if CFACTS_PATCH |
|
facts += c->cfact; |
|
#else |
|
facts += 1; |
|
#endif // CFACTS_PATCH |
|
|
|
for (i = 0, c = nexttiled(m->clients); c; c = nexttiled(c->next), i++) |
|
if (i >= ai && i < (ai + an)) |
|
#if CFACTS_PATCH |
|
total += size * (c->cfact / facts); |
|
#else |
|
total += size / facts; |
|
#endif // CFACTS_PATCH |
|
|
|
*rest = size - total; |
|
*fact = facts; |
|
} |
|
|
|
#if IPC_PATCH || DWMC_PATCH |
|
static void |
|
setlayoutaxisex(const Arg *arg) |
|
{ |
|
int axis, arr; |
|
|
|
axis = arg->i & 0x3; // lower two bytes indicates layout, master or stack1-2 |
|
arr = ((arg->i & 0xFC) >> 2); // remaining six upper bytes indicate arrangement |
|
|
|
if ((axis == 0 && abs(arr) > LAYOUT_LAST) |
|
|| (axis > 0 && (arr > AXIS_LAST || arr < 0))) |
|
arr = 0; |
|
|
|
selmon->ltaxis[axis] = arr; |
|
#if PERTAG_PATCH |
|
selmon->pertag->ltaxis[selmon->pertag->curtag][axis] = selmon->ltaxis[axis]; |
|
#endif // PERTAG_PATCH |
|
arrange(selmon); |
|
} |
|
#endif // IPC_PATCH | DWMC_PATCH |
|
|
|
static void |
|
layout_no_split(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n) |
|
{ |
|
(&flextiles[m->ltaxis[m->nmaster >= n ? MASTER : STACK]])->arrange(m, x, y, h, w, ih, iv, n, n, 0); |
|
} |
|
|
|
static void |
|
layout_split_vertical(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n) |
|
{ |
|
/* Split master into master + stack if we have enough clients */ |
|
if (m->nmaster && n > m->nmaster) { |
|
layout_split_vertical_fixed(m, x, y, h, w, ih, iv, n); |
|
} else { |
|
layout_no_split(m, x, y, h, w, ih, iv, n); |
|
} |
|
} |
|
|
|
static void |
|
layout_split_vertical_fixed(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n) |
|
{ |
|
int sw, sx; |
|
|
|
sw = (w - iv) * (1 - m->mfact); |
|
w = (w - iv) * m->mfact; |
|
if (m->ltaxis[LAYOUT] < 0) { // mirror |
|
sx = x; |
|
x += sw + iv; |
|
} else { |
|
sx = x + w + iv; |
|
} |
|
|
|
(&flextiles[m->ltaxis[MASTER]])->arrange(m, x, y, h, w, ih, iv, n, m->nmaster, 0); |
|
(&flextiles[m->ltaxis[STACK]])->arrange(m, sx, y, h, sw, ih, iv, n, n - m->nmaster, m->nmaster); |
|
} |
|
|
|
static void |
|
layout_split_vertical_dual_stack(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n) |
|
{ |
|
/* Split master into master + stack if we have enough clients */ |
|
if (!m->nmaster || n <= m->nmaster) { |
|
layout_no_split(m, x, y, h, w, ih, iv, n); |
|
} else if (n <= m->nmaster + (m->nstack ? m->nstack : 1)) { |
|
layout_split_vertical(m, x, y, h, w, ih, iv, n); |
|
} else { |
|
layout_split_vertical_dual_stack_fixed(m, x, y, h, w, ih, iv, n); |
|
} |
|
} |
|
|
|
static void |
|
layout_split_vertical_dual_stack_fixed(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n) |
|
{ |
|
int sh, sw, sx, oy, sc; |
|
|
|
if (m->nstack) |
|
sc = m->nstack; |
|
else |
|
sc = (n - m->nmaster) / 2 + ((n - m->nmaster) % 2 > 0 ? 1 : 0); |
|
|
|
sw = (w - iv) * (1 - m->mfact); |
|
sh = (h - ih) / 2; |
|
w = (w - iv) * m->mfact; |
|
oy = y + sh + ih; |
|
if (m->ltaxis[LAYOUT] < 0) { // mirror |
|
sx = x; |
|
x += sw + iv; |
|
} else { |
|
sx = x + w + iv; |
|
} |
|
|
|
(&flextiles[m->ltaxis[MASTER]])->arrange(m, x, y, h, w, ih, iv, n, m->nmaster, 0); |
|
(&flextiles[m->ltaxis[STACK]])->arrange(m, sx, y, sh, sw, ih, iv, n, sc, m->nmaster); |
|
(&flextiles[m->ltaxis[STACK2]])->arrange(m, sx, oy, sh, sw, ih, iv, n, n - m->nmaster - sc, m->nmaster + sc); |
|
} |
|
|
|
static void |
|
layout_split_horizontal(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n) |
|
{ |
|
/* Split master into master + stack if we have enough clients */ |
|
if (m->nmaster && n > m->nmaster) { |
|
layout_split_horizontal_fixed(m, x, y, h, w, ih, iv, n); |
|
} else { |
|
layout_no_split(m, x, y, h, w, ih, iv, n); |
|
} |
|
} |
|
|
|
static void |
|
layout_split_horizontal_fixed(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n) |
|
{ |
|
int sh, sy; |
|
|
|
sh = (h - ih) * (1 - m->mfact); |
|
h = (h - ih) * m->mfact; |
|
if (m->ltaxis[LAYOUT] < 0) { // mirror |
|
sy = y; |
|
y += sh + ih; |
|
} else { |
|
sy = y + h + ih; |
|
} |
|
|
|
(&flextiles[m->ltaxis[MASTER]])->arrange(m, x, y, h, w, ih, iv, n, m->nmaster, 0); |
|
(&flextiles[m->ltaxis[STACK]])->arrange(m, x, sy, sh, w, ih, iv, n, n - m->nmaster, m->nmaster); |
|
} |
|
|
|
static void |
|
layout_split_horizontal_dual_stack(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n) |
|
{ |
|
/* Split master into master + stack if we have enough clients */ |
|
if (!m->nmaster || n <= m->nmaster) { |
|
layout_no_split(m, x, y, h, w, ih, iv, n); |
|
} else if (n <= m->nmaster + (m->nstack ? m->nstack : 1)) { |
|
layout_split_horizontal(m, x, y, h, w, ih, iv, n); |
|
} else { |
|
layout_split_horizontal_dual_stack_fixed(m, x, y, h, w, ih, iv, n); |
|
} |
|
} |
|
|
|
static void |
|
layout_split_horizontal_dual_stack_fixed(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n) |
|
{ |
|
int sh, sy, ox, sc; |
|
|
|
if (m->nstack) |
|
sc = m->nstack; |
|
else |
|
sc = (n - m->nmaster) / 2 + ((n - m->nmaster) % 2 > 0 ? 1 : 0); |
|
|
|
sh = (h - ih) * (1 - m->mfact); |
|
h = (h - ih) * m->mfact; |
|
sw = (w - iv) / 2; |
|
ox = x + sw + iv; |
|
if (m->ltaxis[LAYOUT] < 0) { // mirror |
|
sy = y; |
|
y += sh + ih; |
|
} else { |
|
sy = y + h + ih; |
|
} |
|
|
|
(&flextiles[m->ltaxis[MASTER]])->arrange(m, x, y, h, w, ih, iv, n, m->nmaster, 0); |
|
(&flextiles[m->ltaxis[STACK]])->arrange(m, x, sy, sh, sw, ih, iv, n, sc, m->nmaster); |
|
(&flextiles[m->ltaxis[STACK2]])->arrange(m, ox, sy, sh, sw, ih, iv, n, n - m->nmaster - sc, m->nmaster + sc); |
|
} |
|
|
|
static void |
|
layout_split_centered_vertical(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n) |
|
{ |
|
/* Split master into master + stack if we have enough clients */ |
|
if (!m->nmaster || n <= m->nmaster) { |
|
layout_no_split(m, x, y, h, w, ih, iv, n); |
|
} else if (n <= m->nmaster + (m->nstack ? m->nstack : 1)) { |
|
layout_split_vertical(m, x, y, h, w, ih, iv, n); |
|
} else { |
|
layout_split_centered_vertical_fixed(m, x, y, h, w, ih, iv, n); |
|
} |
|
} |
|
|
|
static void |
|
layout_split_centered_vertical_fixed(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n) |
|
{ |
|
int sw, sx, ox, sc; |
|
|
|
if (m->nstack) |
|
sc = m->nstack; |
|
else |
|
sc = (n - m->nmaster) / 2 + ((n - m->nmaster) % 2 > 0 ? 1 : 0); |
|
|
|
sw = (w - 2*iv) * (1 - m->mfact) / 2; |
|
w = (w - 2*iv) * m->mfact; |
|
if (m->ltaxis[LAYOUT] < 0) { // mirror |
|
sx = x; |
|
x += sw + iv; |
|
ox = x + w + iv; |
|
} else { |
|
ox = x; |
|
x += sw + iv; |
|
sx = x + w + iv; |
|
} |
|
|
|
(&flextiles[m->ltaxis[MASTER]])->arrange(m, x, y, h, w, ih, iv, n, m->nmaster, 0); |
|
(&flextiles[m->ltaxis[STACK]])->arrange(m, sx, y, h, sw, ih, iv, n, sc, m->nmaster); |
|
(&flextiles[m->ltaxis[STACK2]])->arrange(m, ox, y, h, sw, ih, iv, n, n - m->nmaster - sc, m->nmaster + sc); |
|
} |
|
|
|
static void |
|
layout_split_centered_horizontal(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n) |
|
{ |
|
/* Split master into master + stack if we have enough clients */ |
|
if (!m->nmaster || n <= m->nmaster) { |
|
layout_no_split(m, x, y, h, w, ih, iv, n); |
|
} else if (n <= m->nmaster + (m->nstack ? m->nstack : 1)) { |
|
layout_split_horizontal(m, x, y, h, w, ih, iv, n); |
|
} else { |
|
layout_split_centered_horizontal_fixed(m, x, y, h, w, ih, iv, n); |
|
} |
|
} |
|
|
|
static void |
|
layout_split_centered_horizontal_fixed(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n) |
|
{ |
|
int sh, sy, oy, sc; |
|
|
|
if (m->nstack) |
|
sc = m->nstack; |
|
else |
|
sc = (n - m->nmaster) / 2 + ((n - m->nmaster) % 2 > 0 ? 1 : 0); |
|
|
|
sh = (h - 2*ih) * (1 - m->mfact) / 2; |
|
h = (h - 2*ih) * m->mfact; |
|
if (m->ltaxis[LAYOUT] < 0) { // mirror |
|
sy = y; |
|
y += sh + ih; |
|
oy = y + h + ih; |
|
} else { |
|
oy = y; |
|
y += sh + ih; |
|
sy = y + h + ih; |
|
} |
|
|
|
(&flextiles[m->ltaxis[MASTER]])->arrange(m, x, y, h, w, ih, iv, n, m->nmaster, 0); |
|
(&flextiles[m->ltaxis[STACK]])->arrange(m, x, sy, sh, w, ih, iv, n, sc, m->nmaster); |
|
(&flextiles[m->ltaxis[STACK2]])->arrange(m, x, oy, sh, w, ih, iv, n, n - m->nmaster - sc, m->nmaster + sc); |
|
} |
|
|
|
static void |
|
layout_floating_master(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n) |
|
{ |
|
/* Split master into master + stack if we have enough clients */ |
|
if (!m->nmaster || n <= m->nmaster) { |
|
layout_no_split(m, x, y, h, w, ih, iv, n); |
|
} else { |
|
layout_floating_master_fixed(m, x, y, h, w, ih, iv, n); |
|
} |
|
} |
|
|
|
static void |
|
layout_floating_master_fixed(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n) |
|
{ |
|
int mh, mw; |
|
|
|
/* Draw stack area first */ |
|
(&flextiles[m->ltaxis[STACK]])->arrange(m, x, y, h, w, ih, iv, n, n - m->nmaster, m->nmaster); |
|
|
|
if (w > h) { |
|
mw = w * m->mfact; |
|
mh = h * 0.9; |
|
} else { |
|
mw = w * 0.9; |
|
mh = h * m->mfact; |
|
} |
|
x = x + (w - mw) / 2; |
|
y = y + (h - mh) / 2; |
|
|
|
(&flextiles[m->ltaxis[MASTER]])->arrange(m, x, y, mh, mw, ih, iv, n, m->nmaster, 0); |
|
} |
|
|
|
static void |
|
arrange_left_to_right(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n, int an, int ai) |
|
{ |
|
int i, rest; |
|
float facts, fact = 1; |
|
Client *c; |
|
|
|
if (ai + an > n) |
|
an = n - ai; |
|
|
|
w -= iv * (an - 1); |
|
getfactsforrange(m, an, ai, w, &rest, &facts); |
|
for (i = 0, c = nexttiled(m->clients); c; c = nexttiled(c->next), i++) { |
|
if (i >= ai && i < (ai + an)) { |
|
#if CFACTS_PATCH |
|
fact = c->cfact; |
|
#endif // CFACTS_PATCH |
|
resize(c, x, y, w * (fact / facts) + ((i - ai) < rest ? 1 : 0) - (2*c->bw), h - (2*c->bw), 0); |
|
x += WIDTH(c) + iv; |
|
} |
|
} |
|
} |
|
|
|
static void |
|
arrange_top_to_bottom(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n, int an, int ai) |
|
{ |
|
int i, rest; |
|
float facts, fact = 1; |
|
Client *c; |
|
|
|
if (ai + an > n) |
|
an = n - ai; |
|
|
|
h -= ih * (an - 1); |
|
getfactsforrange(m, an, ai, h, &rest, &facts); |
|
for (i = 0, c = nexttiled(m->clients); c; c = nexttiled(c->next), i++) { |
|
if (i >= ai && i < (ai + an)) { |
|
#if CFACTS_PATCH |
|
fact = c->cfact; |
|
#endif // CFACTS_PATCH |
|
resize(c, x, y, w - (2*c->bw), h * (fact / facts) + ((i - ai) < rest ? 1 : 0) - (2*c->bw), 0); |
|
y += HEIGHT(c) + ih; |
|
} |
|
} |
|
} |
|
|
|
static void |
|
arrange_monocle(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n, int an, int ai) |
|
{ |
|
int i; |
|
Client *c; |
|
|
|
for (i = 0, c = nexttiled(m->clients); c; c = nexttiled(c->next), i++) |
|
if (i >= ai && i < (ai + an)) |
|
resize(c, x, y, w - (2*c->bw), h - (2*c->bw), 0); |
|
} |
|
|
|
static void |
|
arrange_gridmode(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n, int an, int ai) |
|
{ |
|
int i, cols, rows, ch, cw, cx, cy, cc, cr, chrest, cwrest; // counters |
|
Client *c; |
|
|
|
/* grid dimensions */ |
|
for (rows = 0; rows <= an/2; rows++) |
|
if (rows*rows >= an) |
|
break; |
|
cols = (rows && (rows - 1) * rows >= an) ? rows - 1 : rows; |
|
|
|
/* window geoms (cell height/width) */ |
|
ch = (h - ih * (rows - 1)) / (rows ? rows : 1); |
|
cw = (w - iv * (cols - 1)) / (cols ? cols : 1); |
|
chrest = h - ih * (rows - 1) - ch * rows; |
|
cwrest = w - iv * (cols - 1) - cw * cols; |
|
for (i = 0, c = nexttiled(m->clients); c; c = nexttiled(c->next), i++) { |
|
if (i >= ai && i < (ai + an)) { |
|
cc = ((i - ai) / rows); // client column number |
|
cr = ((i - ai) % rows); // client row number |
|
cx = x + cc * (cw + iv) + MIN(cc, cwrest); |
|
cy = y + cr * (ch + ih) + MIN(cr, chrest); |
|
resize(c, cx, cy, cw + (cc < cwrest ? 1 : 0) - 2*c->bw, ch + (cr < chrest ? 1 : 0) - 2*c->bw, False); |
|
} |
|
} |
|
} |
|
|
|
static void |
|
arrange_horizgrid(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n, int an, int ai) |
|
{ |
|
int ntop, nbottom, rh, rest; |
|
|
|
/* Exception when there is only one client; don't split into two rows */ |
|
if (an == 1) { |
|
arrange_monocle(m, x, y, h, w, ih, iv, n, an, ai); |
|
return; |
|
} |
|
|
|
ntop = an / 2; |
|
nbottom = an - ntop; |
|
rh = (h - ih) / 2; |
|
rest = h - ih - rh * 2; |
|
arrange_left_to_right(m, x, y, rh + rest, w, ih, iv, n, ntop, ai); |
|
arrange_left_to_right(m, x, y + rh + ih + rest, rh, w, ih, iv, n, nbottom, ai + ntop); |
|
} |
|
|
|
static void |
|
arrange_gapplessgrid(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n, int an, int ai) |
|
{ |
|
int i, cols, rows, ch, cw, cn, rn, cc, rrest, crest; // counters |
|
Client *c; |
|
|
|
/* grid dimensions */ |
|
for (cols = 1; cols <= an/2; cols++) |
|
if (cols*cols >= an) |
|
break; |
|
if (an == 5) /* set layout against the general calculation: not 1:2:2, but 2:3 */ |
|
cols = 2; |
|
rows = an/cols; |
|
cn = rn = cc = 0; // reset column no, row no, client count |
|
|
|
ch = (h - ih * (rows - 1)) / rows; |
|
rrest = (h - ih * (rows - 1)) - ch * rows; |
|
cw = (w - iv * (cols - 1)) / cols; |
|
crest = (w - iv * (cols - 1)) - cw * cols; |
|
|
|
for (i = 0, c = nexttiled(m->clients); c; c = nexttiled(c->next), i++) { |
|
if (i >= ai && i < (ai + an)) { |
|
if (cc/rows + 1 > cols - an%cols) { |
|
rows = an/cols + 1; |
|
ch = (h - ih * (rows - 1)) / rows; |
|
rrest = (h - ih * (rows - 1)) - ch * rows; |
|
} |
|
resize(c, |
|
x, |
|
y + rn*(ch + ih) + MIN(rn, rrest), |
|
cw + (cn < crest ? 1 : 0) - 2*c->bw, |
|
ch + (rn < rrest ? 1 : 0) - 2*c->bw, |
|
0); |
|
rn++; |
|
cc++; |
|
if (rn >= rows) { |
|
rn = 0; |
|
x += cw + ih + (cn < crest ? 1 : 0); |
|
cn++; |
|
} |
|
} |
|
} |
|
} |
|
|
|
/* This version of gappless grid fills rows first */ |
|
static void |
|
arrange_gapplessgrid_alt1(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n, int an, int ai) |
|
{ |
|
int i, cols, rows, rest, ch; |
|
|
|
/* grid dimensions */ |
|
for (cols = 1; cols <= an/2; cols++) |
|
if (cols*cols >= an) |
|
break; |
|
rows = (cols && (cols - 1) * cols >= an) ? cols - 1 : cols; |
|
ch = (h - ih * (rows - 1)) / (rows ? rows : 1); |
|
rest = (h - ih * (rows - 1)) - ch * rows; |
|
|
|
for (i = 0; i < rows; i++) { |
|
arrange_left_to_right(m, x, y, ch + (i < rest ? 1 : 0), w, ih, iv, n, MIN(cols, an - i*cols), ai + i*cols); |
|
y += ch + (i < rest ? 1 : 0) + ih; |
|
} |
|
} |
|
|
|
/* This version of gappless grid fills columns first */ |
|
static void |
|
arrange_gapplessgrid_alt2(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n, int an, int ai) |
|
{ |
|
int i, cols, rows, rest, cw; |
|
|
|
/* grid dimensions */ |
|
for (rows = 0; rows <= an/2; rows++) |
|
if (rows*rows >= an) |
|
break; |
|
cols = (rows && (rows - 1) * rows >= an) ? rows - 1 : rows; |
|
cw = (w - iv * (cols - 1)) / (cols ? cols : 1); |
|
rest = (w - iv * (cols - 1)) - cw * cols; |
|
|
|
for (i = 0; i < cols; i++) { |
|
arrange_top_to_bottom(m, x, y, h, cw + (i < rest ? 1 : 0), ih, iv, n, MIN(rows, an - i*rows), ai + i*rows); |
|
x += cw + (i < rest ? 1 : 0) + iv; |
|
} |
|
} |
|
|
|
static void |
|
arrange_fibonacci(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n, int an, int ai, int s) |
|
{ |
|
int i, j, nv, hrest = 0, wrest = 0, nx = x, ny = y, nw = w, nh = h, r = 1; |
|
Client *c; |
|
|
|
for (i = 0, j = 0, c = nexttiled(m->clients); c; c = nexttiled(c->next), j++) { |
|
if (j >= ai && j < (ai + an)) { |
|
if (r) { |
|
if ((i % 2 && ((nh - ih) / 2) <= (bh + 2*c->bw)) || (!(i % 2) && ((nw - iv) / 2) <= (bh + 2*c->bw))) { |
|
r = 0; |
|
} |
|
if (r && i < an - 1) { |
|
if (i % 2) { |
|
nv = (nh - ih) / 2; |
|
hrest = nh - 2*nv - ih; |
|
nh = nv; |
|
} else { |
|
nv = (nw - iv) / 2; |
|
wrest = nw - 2*nv - iv; |
|
nw = nv; |
|
} |
|
|
|
if ((i % 4) == 2 && !s) |
|
nx += nw + iv; |
|
else if ((i % 4) == 3 && !s) |
|
ny += nh + ih; |
|
} |
|
if ((i % 4) == 0) { |
|
if (s) { |
|
ny += nh + ih; |
|
nh += hrest; |
|
} else { |
|
nh -= hrest; |
|
ny -= nh + ih; |
|
} |
|
} else if ((i % 4) == 1) { |
|
nx += nw + iv; |
|
nw += wrest; |
|
} else if ((i % 4) == 2) { |
|
ny += nh + ih; |
|
nh += hrest; |
|
if (i < n - 1) |
|
nw += wrest; |
|
} else if ((i % 4) == 3) { |
|
if (s) { |
|
nx += nw + iv; |
|
nw -= wrest; |
|
} else { |
|
nw -= wrest; |
|
nx -= nw + iv; |
|
nh += hrest; |
|
} |
|
} |
|
if (i == 0) { |
|
if (an != 1) { |
|
nw = (w - iv) - (w - iv) * (1 - m->mfact); |
|
wrest = 0; |
|
} |
|
ny = y; |
|
} else if (i == 1) |
|
nw = w - nw - iv; |
|
i++; |
|
} |
|
|
|
resize(c, nx, ny, nw - 2 * c->bw, nh - 2*c->bw, False); |
|
} |
|
} |
|
} |
|
|
|
static void |
|
arrange_dwindle(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n, int an, int ai) |
|
{ |
|
arrange_fibonacci(m, x, y, h, w, ih, iv, n, an, ai, 1); |
|
} |
|
|
|
static void |
|
arrange_spiral(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n, int an, int ai) |
|
{ |
|
arrange_fibonacci(m, x, y, h, w, ih, iv, n, an, ai, 0); |
|
} |
|
|
|
static void |
|
arrange_tatami(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n, int an, int ai) |
|
{ |
|
unsigned int i, j, nx, ny, nw, nh, tnx, tny, tnw, tnh, nhrest, hrest, wrest, areas, mats, cats; |
|
Client *c; |
|
|
|
nx = x; |
|
ny = y; |
|
nw = w; |
|
nh = h; |
|
|
|
mats = an / 5; |
|
cats = an % 5; |
|
hrest = 0; |
|
wrest = 0; |
|
|
|
areas = mats + (cats > 0); |
|
nh = (h - ih * (areas - 1)) / areas; |
|
nhrest = (h - ih * (areas - 1)) % areas; |
|
|
|
for (i = 0, j = 0, c = nexttiled(m->clients); c; c = nexttiled(c->next), j++) { |
|
if (j >= ai && j < (ai + an)) { |
|
|
|
tnw = nw; |
|
tnx = nx; |
|
tnh = nh; |
|
tny = ny; |
|
|
|
if (j < ai + cats) { |
|
/* Arrange cats (all excess clients that can't be tiled as mats). Cats sleep on mats. */ |
|
|
|
switch (cats) { |
|
case 1: // fill |
|
break; |
|
case 2: // up and down |
|
if ((i % 5) == 0) //up |
|
tnh = (nh - ih) / 2 + (nh - ih) % 2; |
|
else if ((i % 5) == 1) { //down |
|
tny += (nh - ih) / 2 + (nh - ih) % 2 + ih; |
|
tnh = (nh - ih) / 2; |
|
} |
|
break; |
|
case 3: //bottom, up-left and up-right |
|
if ((i % 5) == 0) { // up-left |
|
tnw = (nw - iv) / 2 + (nw - iv) % 2; |
|
tnh = (nh - ih) * 2 / 3 + (nh - ih) * 2 % 3; |
|
} else if ((i % 5) == 1) { // up-right |
|
tnx += (nw - iv) / 2 + (nw - iv) % 2 + iv; |
|
tnw = (nw - iv) / 2; |
|
tnh = (nh - ih) * 2 / 3 + (nh - ih) * 2 % 3; |
|
} else if ((i % 5) == 2) { //bottom |
|
tnh = (nh - ih) / 3; |
|
tny += (nh - ih) * 2 / 3 + (nh - ih) * 2 % 3 + ih; |
|
} |
|
break; |
|
case 4: // bottom, left, right and top |
|
if ((i % 5) == 0) { //top |
|
hrest = (nh - 2 * ih) % 4; |
|
tnh = (nh - 2 * ih) / 4 + (hrest ? 1 : 0); |
|
} else if ((i % 5) == 1) { // left |
|
tnw = (nw - iv) / 2 + (nw - iv) % 2; |
|
tny += (nh - 2 * ih) / 4 + (hrest ? 1 : 0) + ih; |
|
tnh = (nh - 2 * ih) * 2 / 4 + (hrest > 1 ? 1 : 0); |
|
} else if ((i % 5) == 2) { // right |
|
tnx += (nw - iv) / 2 + (nw - iv) % 2 + iv; |
|
tnw = (nw - iv) / 2; |
|
tny += (nh - 2 * ih) / 4 + (hrest ? 1 : 0) + ih; |
|
tnh = (nh - 2 * ih) * 2 / 4 + (hrest > 1 ? 1 : 0); |
|
} else if ((i % 5) == 3) { // bottom |
|
tny += (nh - 2 * ih) / 4 + (hrest ? 1 : 0) + (nh - 2 * ih) * 2 / 4 + (hrest > 1 ? 1 : 0) + 2 * ih; |
|
tnh = (nh - 2 * ih) / 4 + (hrest > 2 ? 1 : 0); |
|
} |
|
break; |
|
} |
|
|
|
} else { |
|
/* Arrange mats. One mat is a collection of five clients arranged tatami style */ |
|
|
|
if (((i - cats) % 5) == 0) { |
|
if ((cats > 0) || ((i - cats) >= 5)) { |
|
tny = ny = ny + nh + (nhrest > 0 ? 1 : 0) + ih; |
|
--nhrest; |
|
} |
|
} |
|
|
|
switch ((i - cats) % 5) { |
|
case 0: // top-left-vert |
|
wrest = (nw - 2 * iv) % 3; |
|
hrest = (nh - 2 * ih) % 3; |
|
tnw = (nw - 2 * iv) / 3 + (wrest ? 1 : 0); |
|
tnh = (nh - 2 * ih) * 2 / 3 + hrest + iv; |
|
break; |
|
case 1: // top-right-hor |
|
tnx += (nw - 2 * iv) / 3 + (wrest ? 1 : 0) + iv; |
|
tnw = (nw - 2 * iv) * 2 / 3 + (wrest > 1 ? 1 : 0) + iv; |
|
tnh = (nh - 2 * ih) / 3 + (hrest ? 1 : 0); |
|
break; |
|
case 2: // center |
|
tnx += (nw - 2 * iv) / 3 + (wrest ? 1 : 0) + iv; |
|
tnw = (nw - 2 * iv) / 3 + (wrest > 1 ? 1 : 0); |
|
tny += (nh - 2 * ih) / 3 + (hrest ? 1 : 0) + ih; |
|
tnh = (nh - 2 * ih) / 3 + (hrest > 1 ? 1 : 0); |
|
break; |
|
case 3: // bottom-right-vert |
|
tnx += (nw - 2 * iv) * 2 / 3 + wrest + 2 * iv; |
|
tnw = (nw - 2 * iv) / 3; |
|
tny += (nh - 2 * ih) / 3 + (hrest ? 1 : 0) + ih; |
|
tnh = (nh - 2 * ih) * 2 / 3 + hrest + iv; |
|
break; |
|
case 4: // (oldest) bottom-left-hor |
|
tnw = (nw - 2 * iv) * 2 / 3 + wrest + iv; |
|
tny += (nh - 2 * ih) * 2 / 3 + hrest + 2 * iv; |
|
tnh = (nh - 2 * ih) / 3; |
|
break; |
|
} |
|
|
|
} |
|
|
|
resize(c, tnx, tny, tnw - 2 * c->bw, tnh - 2 * c->bw, False); |
|
++i; |
|
} |
|
} |
|
} |
|
|
|
static void |
|
flextile(Monitor *m) |
|
{ |
|
unsigned int n; |
|
int oh = 0, ov = 0, ih = 0, iv = 0; // gaps outer/inner horizontal/vertical |
|
|
|
#if VANITYGAPS_PATCH |
|
getgaps(m, &oh, &ov, &ih, &iv, &n); |
|
#else |
|
Client *c; |
|
for (n = 0, c = nexttiled(m->clients); c; c = nexttiled(c->next), n++); |
|
#endif // VANITYGAPS_PATCH |
|
|
|
if (m->lt[m->sellt]->preset.layout != m->ltaxis[LAYOUT] || |
|
m->lt[m->sellt]->preset.masteraxis != m->ltaxis[MASTER] || |
|
m->lt[m->sellt]->preset.stack1axis != m->ltaxis[STACK] || |
|
m->lt[m->sellt]->preset.stack2axis != m->ltaxis[STACK2]) |
|
setflexsymbols(m, n); |
|
else if (m->lt[m->sellt]->preset.symbolfunc != NULL) |
|
m->lt[m->sellt]->preset.symbolfunc(m, n); |
|
|
|
if (n == 0) |
|
return; |
|
|
|
#if VANITYGAPS_PATCH && !VANITYGAPS_MONOCLE_PATCH |
|
/* No outer gap if full screen monocle */ |
|
if (abs(m->ltaxis[MASTER]) == MONOCLE && (abs(m->ltaxis[LAYOUT]) == NO_SPLIT || n <= m->nmaster)) { |
|
oh = 0; |
|
ov = 0; |
|
} |
|
#endif // VANITYGAPS_PATCH && !VANITYGAPS_MONOCLE_PATCH |
|
|
|
(&flexlayouts[abs(m->ltaxis[LAYOUT])])->arrange(m, m->wx + ov, m->wy + oh, m->wh - 2*oh, m->ww - 2*ov, ih, iv, n); |
|
return; |
|
} |
|
|
|
static void |
|
setflexsymbols(Monitor *m, unsigned int n) |
|
{ |
|
int l; |
|
char sym1, sym2, sym3; |
|
Client *c; |
|
|
|
if (n == 0) |
|
for (c = nexttiled(m->clients); c; c = nexttiled(c->next), n++); |
|
|
|
l = abs(m->ltaxis[LAYOUT]); |
|
if (m->ltaxis[MASTER] == MONOCLE && (l == NO_SPLIT || !m->nmaster || n <= m->nmaster)) { |
|
monoclesymbols(m, n); |
|
return; |
|
} |
|
|
|
if (m->ltaxis[STACK] == MONOCLE && (l == SPLIT_VERTICAL || l == SPLIT_HORIZONTAL_FIXED)) { |
|
decksymbols(m, n); |
|
return; |
|
} |
|
|
|
/* Layout symbols */ |
|
if (l == NO_SPLIT || !m->nmaster) { |
|
sym1 = sym2 = sym3 = (int)tilesymb[m->ltaxis[MASTER]]; |
|
} else { |
|
sym2 = layoutsymb[l]; |
|
if (m->ltaxis[LAYOUT] < 0) { |
|
sym1 = tilesymb[m->ltaxis[STACK]]; |
|
sym3 = tilesymb[m->ltaxis[MASTER]]; |
|
} else { |
|
sym1 = tilesymb[m->ltaxis[MASTER]]; |
|
sym3 = tilesymb[m->ltaxis[STACK]]; |
|
} |
|
} |
|
|
|
snprintf(m->ltsymbol, sizeof m->ltsymbol, "%c%c%c", sym1, sym2, sym3); |
|
} |
|
|
|
static void |
|
monoclesymbols(Monitor *m, unsigned int n) |
|
{ |
|
if (n > 0) |
|
snprintf(m->ltsymbol, sizeof m->ltsymbol, "[%d]", n); |
|
else |
|
snprintf(m->ltsymbol, sizeof m->ltsymbol, "[M]"); |
|
} |
|
|
|
static void |
|
decksymbols(Monitor *m, unsigned int n) |
|
{ |
|
if (n > m->nmaster) |
|
snprintf(m->ltsymbol, sizeof m->ltsymbol, "[]%d", n); |
|
else |
|
snprintf(m->ltsymbol, sizeof m->ltsymbol, "[D]"); |
|
} |
|
|
|
/* Mirror layout axis for flextile */ |
|
void |
|
mirrorlayout(const Arg *arg) |
|
{ |
|
if (!selmon->lt[selmon->sellt]->arrange) |
|
return; |
|
selmon->ltaxis[LAYOUT] *= -1; |
|
#if PERTAG_PATCH |
|
selmon->pertag->ltaxis[selmon->pertag->curtag][0] = selmon->ltaxis[LAYOUT]; |
|
#endif // PERTAG_PATCH |
|
arrange(selmon); |
|
} |
|
|
|
/* Rotate layout axis for flextile */ |
|
void |
|
rotatelayoutaxis(const Arg *arg) |
|
{ |
|
int incr = (arg->i > 0 ? 1 : -1); |
|
int axis = abs(arg->i) - 1; |
|
|
|
if (!selmon->lt[selmon->sellt]->arrange) |
|
return; |
|
if (axis == LAYOUT) { |
|
if (selmon->ltaxis[LAYOUT] >= 0) { |
|
selmon->ltaxis[LAYOUT] += incr; |
|
if (selmon->ltaxis[LAYOUT] >= LAYOUT_LAST) |
|
selmon->ltaxis[LAYOUT] = 0; |
|
else if (selmon->ltaxis[LAYOUT] < 0) |
|
selmon->ltaxis[LAYOUT] = LAYOUT_LAST - 1; |
|
} else { |
|
selmon->ltaxis[LAYOUT] -= incr; |
|
if (selmon->ltaxis[LAYOUT] <= -LAYOUT_LAST) |
|
selmon->ltaxis[LAYOUT] = 0; |
|
else if (selmon->ltaxis[LAYOUT] > 0) |
|
selmon->ltaxis[LAYOUT] = -LAYOUT_LAST + 1; |
|
} |
|
} else { |
|
selmon->ltaxis[axis] += incr; |
|
if (selmon->ltaxis[axis] >= AXIS_LAST) |
|
selmon->ltaxis[axis] = 0; |
|
else if (selmon->ltaxis[axis] < 0) |
|
selmon->ltaxis[axis] = AXIS_LAST - 1; |
|
} |
|
#if PERTAG_PATCH |
|
selmon->pertag->ltaxis[selmon->pertag->curtag][axis] = selmon->ltaxis[axis]; |
|
#endif // PERTAG_PATCH |
|
arrange(selmon); |
|
setflexsymbols(selmon, 0); |
|
} |
|
|
|
void |
|
incnstack(const Arg *arg) |
|
{ |
|
#if PERTAG_PATCH |
|
selmon->nstack = selmon->pertag->nstacks[selmon->pertag->curtag] = MAX(selmon->nstack + arg->i, 0); |
|
#else |
|
selmon->nstack = MAX(selmon->nstack + arg->i, 0); |
|
#endif // PERTAG_PATCH |
|
arrange(selmon); |
|
} |
|
|
|
|